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ABSTRACT: The oncoprotein MDM2 negatively regulates the activity and stability of the p53 tumor suppressor and is an
important molecular target for anticancer therapy. Aided by mirror image phage display and native chemical ligation, we have
previously discovered several proteolysis-resistant duodecimal D-peptide antagonists of MDM2, termed DPMI-α, β, γ. The
prototypic D-peptide inhibitor DPMI-α binds (25−109)MDM2 at an affinity of 220 nM and kills tumor cells in vitro and inhibits
tumor growth in vivo by reactivating the p53 pathway. Herein, we report the design of a superactive D-peptide antagonist of
MDM2, termed DPMI-δ, of which the binding affinity for (25−109)MDM2 has been improved over DPMI-α by 3 orders of
magnitude (Kd = 220 pM). X-ray crystallographic studies validate DPMI-δ as an exceedingly potent inhibitor of the p53−MDM2
interaction, promising to be a highly attractive lead drug candidate for anticancer therapeutic development.

■ INTRODUCTION
Functional inhibition of the p53 tumor suppressor protein by
its negative regulators MDM2 and MDMX, whose genes
MDM2 and MDMX are often amplified and/or overexpressed
in many tumors harboring wild type TP53, directly contributes
to tumor development and progression.1 MDM2 is an E3
ubiquitin ligase that specifically targets p53 for proteosomal
degradation,2 a process potentiated by MDM2 hetero-
oligomerization with its homologue MDMX.3 Both MDM2
and MDMX can also antagonize p53 transcription activity by
sequestering p53 transactivation domain via their N-terminal
p53-binding domains.4 Disrupting the p53-MDM2/MDMX
inhibitory complex to rescue wild type p53 function has been
validated as a viable therapeutic strategy for cancer treatment.5

Different structural classes of MDM2/MDMX antagonists exist
as potential anticancer drug candidates, including low molecular
weight compounds,6 small peptides and peptidomimetics,7 and
miniature proteins,8 among others. Using mirror image phage
display coupled with native chemical ligation,9 we have
previously discovered several 12-mer D-peptide antagonists of
MDM2, termed DPMI-α,β,γ, that are resistant to proteolytic
degradation.10 The prototypic D-peptide inhibitor DPMI-α
binds (25−109)MDM2 at an affinity of 220 nM and kills tumor
cells in vitro and inhibits tumor growth in vivo by reactivating
the p53 pathway.
We have previously shown that DPMI-α (TNWYAN-

LEKLLR) adopts a left-handed α-helical conformation, burying
several bulky hydrophobic side chains (highlighted in bold
typeface) into the p53-binding cavity of (25−109)MDM2 (Figure
1A). Among those, Trp3 and Leu7 are the two most critical
residues of DPMI-α, contributing a combined free energy of 7.6
kcal/mol to (25−109)MDM2 binding, an equivalent Kd value of
10−6 M.10a Sequence analysis of 18 phage-selected binding
clones indicated that while Trp3 was totally conserved, Leu7
was not, as both Phe and Trp residues were also found at

position 7. In fact, mutational analysis identified Phe7 as the
best residue, registering a 3.5-fold stronger binding to MDM2
than that of Leu7. These findings largely led to the design of
DPMI-β (TAWYANFEKLLR), which contains the N2A/L7F
double mutation and binds (25−109)MDM2 with a Kd value 35
nM.10a Of note, a separate mirror image phage screening under
more stringent conditions identified DPMI-γ (DWWPLA-
FEALLR), which contains a Phe residue at position 7 and
binds (25−109)MDM2 at an affinity of 53 nM.10b Here we report
that an ultrahigh affinity (Kd = 220 pM), protease-resistant D-
peptide is designed to antagonize MDM2 by specifically
targeting its p53-binding cavity, promising to be a highly
attractive lead drug candidate for anticancer therapeutic
development.

■ RESULTS AND DISCUSSION
Structural analysis of DPMI-α-(25−109)MDM2 and DPMI-
γ-(25−109)MDM2 suggested that the aromatic side chain of a
Phe7 residue in DPMIs would not fully occupy its cognate
binding site on MDM2. Therefore, we hypothesized that
modifications to Phe7 side chain to improve its size and/or
hydrophobicity would enhance MDM2 binding by these D-
peptide ligands. To test this hypothesis, we used DPMI-β as our
model peptide and first evaluated the positional effect of
chlorination of the phenyl ring of Phe7 of DPMI-β on MDM2
binding. A fluorescence polarization (FP)-based competition
assay was developed to quantify the ability of three Cl−
Phe7−DPMI-β peptides (chlorination at positions 2, 3, and 4),
along with 4-Br−Phe7−DPMI-β, to compete for MDM2
binding with N-acetyl-(15−29)p53 to which carboxyfluorescein
(FAM) was conjugated via its Lys24 side chain. The following
order of binding activity was obtained on the basis of IC50
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values: 4-Cl−Phe ≈ 4-Br−Phe > Phe > 2-Cl−Phe≫ 3-Cl−Phe
(Supporting Information (SI) Figure S1 and Table S1). Clearly,
chlorination or bromination at the para position of Phe7
enhanced DPMI-β binding to MDM2, while chlorination at the
meta and ortho positions weakened it.
In light of these initial findings, we concentrated on the para

position of Phe7 and synthesized five additional p-X−
Phe7−DPMI-β peptides, where X = F, I, CH3, CF3, and CN.
To improve FP assay sensitivity and dynamic range, a more
potent, FAM-labeled p-Br−Phe7−DPMI-β peptide was used

under otherwise identical experimental conditions. As shown in
SI Figure S2 and Table S2, the following order of MDM2-
binding activity ensued for p-X−Phe7−DPMI-β: CF3 > I > Br >
Cl > CH3 > F > CN > H (Phe). The trifluoromethyl
substitution at the para position of Phe7 emerged as the best
modification to enhance DPMI-β binding to MDM2. For
accurate quantification, we performed a previously established,
surface plasmon resonance (SPR)-based competitive binding
assay8b,11 for (25−109)MDM2 interacting with DPMI-β and p-
CF3− Phe7−DPMI-β. As shown in Figure 1B and Table 1,

Figure 1. (A) MDM2-binding modes of DPMI-α and DPMI-γ peptides. The structures of DPMI-α−(25−109)MDM2 (PDB 3LNJ) and DPMI-
γ-(25−109)MDM2 (PDB 3IWY) are superimposed based on MDM2 molecules with DPMI-α (cyan) and DPMI-γ (yellow) displayed on the molecular
surface of MDM2 complexed with DPMI-γ. The electrostatic potential displayed on MDM2 surface is colored red for negative, blue for positive, and
white for apolar. The D-peptides are depicted in a Cα ribbon diagram where only the side chains of the residues involved in MDM2 binding are
shown as ball-and-sticks. Interactions of 30 nM (25−109)MDM2 (B) or 100 nM (24−108)MDMX (C) with a 2-fold dilution series of DPMI-β, p-CF3−
Phe7−DPMI-β, 6-F−Trp3−DPMI-β, and DPMI-δ as quantified by SPR-based competitive binding assays. The Kd values obtained from three
independent measurements are tabulated in Table 1. (D) p-CF3−Phe7−DPMI-β bound in the hydrophobic pocket of MDM2. The D-peptide is
shown as ribbon, and its side chains are shown as ball-and-sticks. The three most critical residues for MDM2 binding, DTrp3, p-CF3−DPhe7, and
DLeu11 are colored in red as in (E). (E) The p-CF3−Phe7−DPMI-β−(25−109)MDM2 complex interface. Contact residues of MDM2 and p-CF3−
Phe7−DPMI-β are shown as sticks and ball-and-sticks, respectively, and hydrogen bonds as red dashes. The p-CF3−Phe7−DPMI-β peptide is
anchored in the p53-binding cavity of MDM2 primarily through multiple hydrophobic interactions involving DTrp3, p-CF3−DPhe7 and DLeu11 and
the side chains of DTyr4 and DLeu10. In addition, five intermolecular H-bonds are formed, including DAla2 N−Glu72 Oε1, DTrp3 Nε1−Gln72 O,
DGlu8 Oε1−Lys94 Nζ, DGlu8 Oε2−His96 Nδ1 Nε2, and DLeu11 O−Ty100 Oη. (F) Comparison of the binding pockets of p-CF3−DPhe7 and
DLeu7. The structures of p-CF3−Phe7−DPMI-β−(25−109)MDM2 (red/blue) and DPMI-α−(25−109)MDM2 (green/yellow, PDB 3LNJ) are
superimposed based on MDM2 molecules. The residues lining the p53-binding pocket are depicted as sticks over the molecular surface of
MDM2 complexed with p-CF3−Phe7−DPMI-β-(25−109)MDM2. Leu82, Phe86, and Ile103 of MDM2 make contacts exclusively with p-CF3−DPhe7,
which is buried 3.8 Å deeper within the p53-binding pocket than DLeu7. The side chains of Leu57 and Ile99 of MDM2 shift (from yellow to blue) to
accommodate the trifluoromethyl group of p-CF3−DPhe7 in an enlarged binding pocket.

Table 1. Dissociation Equilibrium Constants (Kd, nM) of DPMI-β, 6-F−Trp3−DPMI-β, p-CF3−Phe7−DPMI-β, and DPMI-δ for
Synthetic (25‑109)MDM2 and (24‑108)MDMXa

DPMI-β 6-F−Trp3−DPMI-β p-CF3−Phe7−DPMI-β DPMI-δ

MDM2 37.8 ± 0.9 14.0 ± 1.0 0.45 ± 0.41 0.22 ± 0.21
MDMX 1440 ± 41 1040 ± 59 569 ± 25 200 ± 10

aEach Kd value (mean ± SD) was obtained from three independent measurements
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whereas DPMI-β bound MDM2 at an affinity of 37.8 nM, in
good agreement with the published value of 34.5 nM,10a p-
CF3−Phe7−DPMI-β bound MDM2 with a Kd value of 450 pM,
a dramatic increase in binding affinity by 80-fold.
To better understand the structural basis of the enhanced

binding of the trifluoromethylated peptide to MDM2, we
determined the crystal structure of (25−109)MDM2 in complex
with p-CF3−Phe7−DPMI-β at 1.8 Å resolution (SI Table S3,
Figures S3−S4). As displayed in Figure 1D, the left-handed
helix of p-CF3−Phe7−DPMI-β anchors deep inside the
hydrophobic p53-binding cleft of MDM2 and establishes
multiple hydrophobic interactions within the pocket primarily
through the bulky side chains of DTrp3, p-CF3−DPhe7, and
DLeu11 as well as the side chains of DTyr4 and DLeu10. Overall,
p-CF3−Phe7−DPMI-β binding to MDM2 closely resembles its
parental peptide DPMI-α as previously reported (SI Figures
S5−S6). However, p-trifluoromethylation of DPhe7 induces
new interactions within the pocket with Leu82, Phe86, and
Ile103 of MDM2 (Figure 1E) and significantly enlarges the
total buried surface area (BSA) of the D-peptide in the complex
(from 561 to 640 Å2). In addition, one more H-bond is formed
between DAla2 N of p-CF3−Phe7−DPMI-β and Glu72 Oε1 of
MDM2. To accommodate the large side chain of p-CF3−DPhe7
two residues of MDM2 (Leu57 and Ile99) reorient in the p53-
binding pocket (Figure 1F).
Importantly, structural analysis of the p-CF3−Phe7−DPMI-
β-(25−109)MDM2 complex revealed that Trp3 would also be
permissible to fluorination at multiple positions of its side
chain. We replaced Trp3 in DPMI-β with 6-F-Trp, and the
resultant D-peptide 6-F−Trp3−DPMI-β bound to
(25−109)MDM2 with a Kd value of 14 nM as determined by
the SPR-based competitive binding assay (Figure 1B and Table
1), representing a 2.5-fold enhancement in binding affinity
relative to DPMI-β. When 6-F−Trp3 was incorporated into p-
CF3−Phe7−DPMI-β, the resultant double mutant 6-F−Trp3/p-
CF3−Phe7−DPMI-β, termed DPMI-δ, bound (25−109)MDM2 at
an affinity of 220 pM, suggesting that the energetic effects of
Trp3 and Phe7 modifications were additive. These results were
confirmed by an independent assay based on FP techniques (SI
Figure S2 and Table S2). It is worth noting that the N-terminal
peptide (residues 1−24) of MDM2 is known to form a partially
structured “lid” in the apo protein, occluding ligand binding to
MDM2 in a ligand size-dependent manner.12 The “lid” has
been shown to reduce the binding affinity for MDM2 of 12-mer
L-peptide ligands by 5-fold.12c It may be anticipated that the Kd
value of DPMI-δ reported here for (25−109)MDM2 would be
higher than that for full-length MDM2.

D-Peptide ligands, unlike their L-peptide counterparts, display
a much greater disparity between MDM2 and MDMX binding,
with a strong preference for MDM2 over MDMX.10,11 We
quantified the interactions of (24−108)MDMX with DPMI-β, p-
CF3−Phe7−DPMI-β, 6-F−Trp3−DPMI-β, and DPMI-δ using
SPR techniques, and the data are shown in Figure 1C and
Table 1. Unexpectedly, p-trifluoromethylation of Phe7
enhanced DPMI-β binding to MDMX by only 2.5-fold, while
fluorination of Trp3 slightly improved it. As a result, DPMI-δ
bound to (24−108)MDMX with a Kd value of 200 nM, 3 orders of
magnitude weaker than its binding to MDM2. These SPR
results are in accord with FP measurements (SI Figure S7 and
Table S4). Obviously, understanding the structural basis of the
strong preference of D-peptide ligands for binding to MDM2
over MDMX will provide important insights into designing
specific antagonists to target either protein.

Fluorocarbons are known to be substantially more hydro-
phobic than corresponding hydrocarbons.13 In fact, fluorinated
aliphatic amino acids have been commonly used in protein de
novo design to improve protein stability while having little
impact on protein structure.14 It has been suggested that
fluorination of alkanes enhances hydrophobicity due to an
increased molecular size and thus a greater free-energy penalty
for hydration.15 The high electronegativity of fluorine also
enables the strongly polar C−F bond to engage in inductive
interactions with surrounding polar groups and to alter
hydration dynamics at fluorinated molecular surfaces.16 We
have demonstrated that although p-trifluoromethylation of
Phe7 gave rise to the greatest improvement, iodination,
bromination, or even chlorination at the para position of the
phenyl ring was similarly effective in improving DPMI-β binding
to MDM2. Of note, replacement of a critical Trp residue by 6-
Cl−Trp has been shown to dramatically enhance the binding
affinity of several peptide and peptidomimetic antagonists for
MDM2 due to enhanced van der Waals interactions and
polarization effects between the 6-Cl−Trp side chain and its
interacting partners of MDM2.17 Given that the p53-binding
cavity of MDM2/MDMX is hydrophobic in nature, halogen-
ation (and fluorination in particular) will likely become a
powerful tool for the design of exceedingly potent activators of
p53 for therapeutic use.18

■ CONCLUSION
Different structural classes of drug candidates such as small
peptides with unsurpassed affinity and specificity are urgently
needed to combat cancer and infectious disease. L-Peptides
have been traditionally considered to be “undruggable” due
primarily to their strong susceptibility to proteolytic degrada-
tion in vivo and inability to efficiently traverse the cell
membrane. Drug discovery based on the scaffold of protease-
resistant D-peptides,19 when coupled with advanced drug
delivery technologies, offers a viable and robust solution to
the problems both academia and industry are facing today. Our
work on the design of ultrahigh affinity D-peptide antagonists of
MDM2/MDMX to activate the p53 tumor suppressor may
spearhead the development of new classes of anticancer
therapeutics.
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(13) (a) Yoder, N. C.; Yüksel, D.; Dafik, L.; Kumar, K. Bioorthogonal
noncovalent chemistry: fluorous phases in chemical biology. Curr.
Opin. Chem. Biol. 2006, 10, 576−583. (b) Biffinger, J. C.; Kim, H. W.;
DiMagno., S. G. The polar hydrophobicity of fluorinated compounds.
ChemBioChem 2004, 5, 622−627. (c) Müller, K.; Faeh, C.; Diederich,
F. Fluorine in pharmaceuticals: looking beyond intuition. Science 2007,
317, 1881−1886.
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